GUÍA DE ESTUDIO PÚBLICA

ENERGÍA EÓLICA

CÓDIGO 68014031

23-24

ENERGÍA EÓLICA CÓDIGO 68014031

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA **ASIGNATURA EQUIPO DOCENTE** HORARIO DE ATENCIÓN AL ESTUDIANTE TUTORIZACIÓN EN CENTROS ASOCIADOS COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE RESULTADOS DE APRENDIZAJE **CONTENIDOS METODOLOGÍA** SISTEMA DE EVALUACIÓN BIBLIOGRAFÍA BÁSICA **BIBLIOGRAFÍA COMPLEMENTARIA** RECURSOS DE APOYO Y WEBGRAFÍA TUTORIZACIÓN EN CENTROS ASOCIADOS PRÁCTICAS DE LABORATORIO IGUALDAD DE GÉNERO

UNED 2 CURSO 2023/24

Nombre de la asignatura ENERGÍA EÓLICA

Código 68014031

Curso académico 2023/2024
Departamento MECÁNICA

Título en que se imparte GRADO EN INGENIERÍA ELÉCTRICA

CURSO - PERIODO - CUARTO CURSO - SEMESTRE 2

Título en que se imparte GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

CURSO - PERIODO - CUARTO CURSO - SEMESTRE 2

Título en que se imparte GRADO EN INGENIERÍA MECÁNICA

CURSO - PERIODO - CUARTO CURSO - SEMESTRE 2

Tipo OPTATIVAS

 N° ETCS
 5

 Horas
 125.0

Idiomas en que se imparte CASTELLANO

PRESENTACIÓN Y CONTEXTUALIZACIÓN

La asignatura Energía Eólica es una asignatura optativa cuatrimestral de 5 créditos ECTS que se imparte en el segundo cuatrimestre del cuarto curso de los Grados en Ingeniería Eléctrica, Ingeniería Mecánica e ingeniería en Tecnologías Industriales, dentro de la materia Ingeniería Fluidomecánica. En esta asignatura se hace aplicación de los fundamentos estudiados en la materia de mecánica de fluidos.

La asignatura tiene por objeto el estudio de los sistemas de aprovechamiento de energía eólica, y especialmente del proceso de transformación de la energía del viento en energía mecánica en el eje de la máquina. Tras una introducción sobre el estado del arte de esta forma de generación de energía, se aborda el estudio de las características del viento y los parámetros que permiten cuantificar el potencial eólico. A continuación se estudia la aerodinámica de las turbinas de eje horizontal. Posteriormente, se analizan la respuesta de la aeroturbina, los componentes del aerogenerador, el diseño de éstos y los sistemas regulación y control. Finalmente se analiza la integración de los aerogeneradores en un parque eólico.

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA

Para el estudio de esta asignatura son recomendables conocimientos previos sobre mecánica de fluidos, aunque no son imprescindibles para el estudio de esta asignatura.

UNED 3 CURSO 2023/24

EQUIPO DOCENTE

Nombre y Apellidos PABLO JOAQUIN GOMEZ DEL PINO (Coordinador de asignatura)

Correo Electrónico pgomez@ind.uned.es

Teléfono 91398-7987

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento MECÁNICA

Nombre y Apellidos CLAUDIO ZANZI Correo Electrónico czanzi@ind.uned.es

Teléfono 91398-8913

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento MECÁNICA

Nombre y Apellidos RAFAEL GOMEZ-ELVIRA GONZALEZ

Correo Electrónico rgomezelvira@ind.uned.es

Teléfono

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento MECÁNICA

HORARIO DE ATENCIÓN AL ESTUDIANTE

El cauce de consulta normal con el Equipo Docente es el curso virtual. Además, es posible contactar con el Equipo Docente por teléfono o personalmente en el horario de guardia, o bien a través de correo electrónico.

Horario de guardia:

Miércoles, de 10 a 14 h (Pablo Gómez del Pino)

Lunes, de 16 a 20 h. (Claudio Zanzi)

Departamento de Mecánica, E.T.S. de Ingenieros Industriales.

Despachos 1.38 y 1.36.

Teléfonos:

91 398 79 87 (Pablo Gómez del Pino)

91 398 89 13 (Claudio Zanzi)

Direcciones de correo electrónico:

pgomez@ind.uned.es

czanzi@ind.uned.es

(En los mensajes de correo electrónico deberá incluirse, dentro del texto que especifique el Asunto, la clave ENEOL).

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones en las que se imparten tutorías de la asignatura. Estas pueden ser:

•Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.

UNED 4 CURSO 2023/24

•Tutorías campus/intercampus: se puede acceder vía internet.

Consultar horarios de tutorización de la asignatura 68014031

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

COMPETENCIAS DEL GRADO (ORDEN CIN 351-2009)

CO.4. Conocimientos y capacidades para aplicar los fundamentos científicos y tecnológicos de la energía eólica.

OTRAS COMPETENCIAS:

- •Conocimiento aplicado de los fundamentos teóricos y tecnológicos de los sistemas y máquinas fluidomecánicas al análisis de sistemas eólicos.
- •Comprensión de textos técnicos en lengua inglesa.
- •Comunicación y expresión matemática, científica y tecnológica.
- •Manejo de las tecnologías de la información y comunicación (TICs).
- •Capacidad para gestionar información.
- •Integración de conocimientos transversales en el ámbito de las tecnologías industriales.

(OBSERVACIONES: Memoria del Grado en proceso de revisión)

RESULTADOS DE APRENDIZAJE

Los logros que debe alcanzar el alumno al estudiar esta asignatura son los siguientes:

- •Conocer los sistemas de aprovechamiento de energía eólica y las características del viento.
- •Saber estimar el potencial eólico de un emplazamiento y la energía generada por un determinado aerogenerador.
- •Saber organizar las tareas necesarias para conseguir una buena asimilación de la materia.
- •Saber expresar correctamente y de forma consistente los conocimientos adquiridos.
- Aprovechar de forma eficiente las tecnologías utilizadas en la enseñanza con metodología a distancia.

CONTENIDOS

- 1. Introducción. Desarrollo histórico y estado actual. Tipos de aeroturbinas
- •Primeros sistemas de aprovechamiento de la energía eólica y su evolución hasta nuestros días
- •Estado actual de implantación de este sistema de generación de energía, en España y en el mundo.

UNED 5 CURSO 2023/24

- •Características y disposiciones constructivas generales de los aerogeneradores de eje vertical y de eje horizontal.
- 2. Características del viento, datos meteorológicos y potencial eólico
- •El movimiento del aire en la atmósfera en las distintas escalas.
- •Variación de las propiedades fluidas con la altura en las distintas capas de la atmósfera.
- •Características del movimiento del aire en la capa límite terrestre.
- •Análisis de datos meteorológicos. Variabilidad temporal del viento
- •Determinación y caracterización del potencial eólico en un emplazamiento.
- 3. Aerodinámica de turbinas de eje horizontal
- •Potencia asociada a la energía cinética del viento. Potencia extraída del viento, modelo de disco actuador.
- •Flujo alrededor de un perfil aerodinámico. Sustentación, resistencia, entrada en pérdidas.
- 4. Actuaciones y curvas características de aeroturbinas
- •Curvas características de un aerogenerador.
- •Sistemas de regulación y control.
- •Cargas sobre el aerogenerador
- 5. Componentes y diseño de aerogeneradores
- •Componentes de un aerogenerador
- •Aspectos relacionados con el diseño de los componentes de un aerogenerador.
- 6. Parques eólicos. Selección de emplazamientos. Aspectos económicos y medioambientales
- •Características de un parque eólico
- •Estimación de la generación de energía a partir de los datos de viento.
- •Aspectos económicos y medioambientales relacionados con los parques eólicos

UNED 6 CURSO 2023/24

METODOLOGÍA

La metodología que se sigue en el estudio de esta asignatura se basa en el modelo metodológico de educación a distancia de la UNED. Las actividades formativas se basan en la interacción con el Equipo Docente y el trabajo autónomo. El Equipo Docente proporcionará orientaciones y material de apoyo para el estudio de la asignatura y, junto con los profesores tutores, atenderán las consultas que planteen los alumnos. El trabajo autónomo estará marcado por una serie de actividades de aprendizaje, tales como el estudio de contenidos teóricos y la realización de ejercicios prácticos, pruebas de evaluación continua y pruebas presenciales.

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen Examen de desarrollo

Preguntas desarrollo

Duración del examen 120 (minutos)

Material permitido en el examen

Calculadora no programable y que no permita almacenar texto.

Criterios de evaluación

Se valorará el conocimiento y grado de asimilación de los contenidos de la asignatura y la capacidad de aplicarlos en la resolución de problemas.

% del examen sobre la nota final

Nota del examen para aprobar sin PEC 5

Nota máxima que aporta el examen a la 10

calificación final sin PEC

Nota mínima en el examen para sumar la 4

PEC

Comentarios y observaciones

La prueba constará de una parte de teoría y otra parte de ejercicios prácticos. La parte teórica puede consistir en dos o tres preguntas que el alumno debe desarrollar, o bien en una serie de afirmaciones independientes en las que se pide al estudiante que conteste para cada una de ellas si es verdadera o falsa, justificando de forma razonada la respuesta. La segunda parte constará de uno o dos ejercicios prácticos. La proporción entre cuestiones teóricas y ejercicios prácticos puede variar ligeramente de un examen a otro (la puntuación máxima de la parte teórica representará aproximadamente entre un 30% y el 40% de la global).

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC? Si Descripción

UNED 7 CURSO 2023/24

ENERGÍA EÓLICA CÓDIGO 68014031

Con carácter voluntario, podrá realizarse una Prueba de Evaluación Continua (PEC), que estará disponible a través del curso virtual, cuya calificación podrá influir en la calificación final de la asignatura de acuerdo con lo indicado en el último apartado, "¿Como se obtiene la nota final?".

La prueba de evaluación continua consistirá en la evaluación del potencial eólico de un emplazamiento y el cálculo de la energía anual que generaría un aerogenerador en dicho emplazamiento.

No será posible realizar la PEC fuera del período establecido. En el caso de que no se supere la asignatura en la convocatoria ordinaria, la calificación obtenida en la PEC será tenida en cuenta también en la convocatoria extraordinaria de septiembre.

Criterios de evaluación

Ponderación de la PEC en la nota final

Fecha aproximada de entrega

Las fechas de entrega se publican en el curso virtual.

Comentarios y observaciones

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s?

Descripción

Criterios de evaluación

Ponderación en la nota final

Fecha aproximada de entrega

Comentarios y observaciones

No

¿CÓMO SE OBTIENE LA NOTA FINAL?

La calificación final de la asignatura se determina a partir de las calificaciones siguientes (cada una de ellas con un valor máximo de 10 puntos):

Calificación de la prueba presencial (CPP).

Calificación de la prueba de evaluación continua (CEC).

La calificación final se obtiene como sigue:

CF = 0,8 CPP + 0,2 CEC si CEC > CPP

CF = CPP si CEC CPP

(es decir, si la nota de la prueba de evaluación a distancia no supera la del examen no se tiene en cuenta). Para aprobar la asignatura es imprescindible obtener una calificación final igual o superior a 5.

UNED 8 CURSO 2023/24

ENERGÍA EÓLICA CÓDIGO 68014031

BIBLIOGRAFÍA BÁSICA

Apuntes elaborados en el Departamento de Mecánica, disponibles en el curso virtual. En la guía de estudio de la asignatura se especifica con detalle el contenido de los temas del programa.

BIBLIOGRAFÍA COMPLEMENTARIA

ISBN(13):9780470015001

Título:WIND ENERGY EXPLAINED: THEORY, DESIGN AND APPLICATION2002

Autor/es:J.F. Manwell; A.L. Rogers; J.G. Mcgowan;

Editorial:: JOHN WILEY & SONS

ISBN(13):9780471489979

Título:WIND ENERGY: HANDBOOK2001

Autor/es:Tony Burton; Ervin Bossanyi; Nick Jenkins; David Sharpe;

Editorial: JOHN WILEY & SONS

ISBN(13):9780471494560

Título:LARGE WIND TURBINES, DESIGN AND ECONOMICS2000

Autor/es:Robert Harrison; Herman Snel; Erich Hau;

Editorial: JOHN WILEY & SONS

ISBN(13):9788436270044

Título:MÁQUINAS HIDRÁULICAS. PROBLEMAS Y SOLUCIONESnull

Autor/es:Julio Hernández Rodríguez ; Claudio Zanzi ; Pablo Gómez Del Pino ;

Editorial:UN.E.D.

ISBN(13):9788472071391

Título:SISTEMAS EÓLICOS DE PRODUCCIÓN DE ENERGÍA ELÉCTRICA2003

Autor/es:Rodríguez Amenedo, J.L., Burgos Díaz, J. C., Arnalte Gómez, S.;

Editorial:Rueda S. L.

El sexto capítulo del libro de problemas de Hernández, Gómez y Zanzi contiene ejercicios resueltos de exámenes de cursos anteriores de asignaturas sobre energía eólica de planes de estudios antiguos y vigentes.

UNED 9 CURSO 2023/24

RECURSOS DE APOYO Y WEBGRAFÍA

El principal medio de apoyo es el curso virtual, cuyo acceso se realiza a través del Campus UNED, utilizando el nombre de usuario y la clave que se facilitaron tras realizar la matrícula. En el curso virtual se incluyen foros de debate, respuestas a preguntas frecuentes, anuncios, una guía de estudio de la asignatura e información actualizada sobre prácticas de laboratorio, proyectos fin de carrera, etc. En caso de dificultad de acceso a las páginas por cualquier motivo el estudiante deberá contactar con el Equipo Docente a través del correo electrónico.

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones en las que se imparten tutorías de la asignatura. Estas pueden ser:

- •Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.
- •Tutorías campus/intercampus: se puede acceder vía internet.

Consultar horarios de tutorización de la asignatura 68014031

PRÁCTICAS DE LABORATORIO

La realización de las prácticas de laboratorio de esta asignatura es voluntaria. Consiste en la visita a una instalación eólica que tiene un día de duración. Para realizar la práctica no es necesario haber aprobado el examen.

La información acerca de las prácticas de laboratorio de todas las asignaturas de Grado se encuentra en la página web de la Escuela, esa información general se particulariza en el curso virtual de esta asignatura.

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 10 CURSO 2023/24